Video Super Resolution

Enhancing videos with the power of Deep Learning

CAN YOU ENHANCE THAT

No, you can not enhance that

What about upscaling?

"Super Resolution"

Intelligent Upscaling

Pattern Discovery with Deep Learning

Deep Learning Background

Machine Learning

Neural Networks

Deep Learning

Convolutional Neural Networks

Memory constraints

- 1. Dataset doesn't fit into memory
- 2. Neural network weights don't fit into memory

Allows us to support dynamically-sized images!

Patch Parameters

Dynamically generated 32x32 pixel patches Random extraction / no stride 50 per frame

Patch concatenation

(Where necessary)

t - 1

t

t + 1

Training pipeline

Downscale Patch

Upscale Patch

Neural Network

Size reduction

Our ground truth patches are reduced from their original size of 32x32 to 16x16

Size increase

Our reduced samples are brought back to 32x32 size by interpolation methods

Evaluation

The neural network "upscales" the 32x32 patch to a higher quality 32x32 patch

Traditional upscaling

True upscaling

Single Image Super Resolution

Video Super Resolution

Recursive Neural Network

Recurrent Neural Network

Convolutional Neural Network

Neural Network Alternatives

(b) Upscaling Stage

Generative Adversarial Network

Candidate architectures

Convolutional Neural Network

Generative Adversarial Neural Network

Deep learning framework

- Easy to learn
- Supports Tensorflow or Theano
- Efficient implementation of layers
- Enables DRY models

Convolutional Neural Network

3 layers 64 9x9 filters 32 5x5 filters 1 5x5 filter **ReLU** activations MSE loss Adam SGD

Generative Adversarial Network

Wrapped model Sub-pixel convolution 2 layers in B residual blocks 64 3x3 kernels **Batch normalization** Skip connections **ReLU** activations Adam SGD

Generative Adversarial Network

Wrapped model 8 layers 64->512 3x3 kernels Stride of 1 or 2 **Batch normalization** Sigmoid activation **ReLU** activations Adam SGD

Discriminator Network

Results

MYANMAR	Bicubic	VSRNet	CNN	GAN
PSNR (2x)	34.59	38.48	38.37	39.54
PSNR (3x)	31.59	34.42	34.48	35.21
PSNR (4x)	29.53	31.85	31.14	30.98

Evaluation measurement

- 1. PSNR
- 2. SSIM
- 3. MSE / Content Loss
- 4. Perceptual Loss
- 5. Generative Loss
- 6. Mean Opinion Score (MOS)

Evaluation dataset

- Current results may not generalize
- Papers all compare against few models
- Papers all use different evaluation sets

Color Palette

Set 5

Set 14

BSD100

Challenges

- 1. Large project scope
- 2. Extremely large training times
- 3. Three primary model approaches
- 4. Lack of universal evaluation dataset

Future work

- 1. Explore potential universal evaluation datasets
- 2. Further explore the potential of GAN networks
- 3. Develop and measure universal speed metrics
- 4. Consider RNN approaches

