Recurrent Neural Networks

Presented by Chris Foster
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A recurrent neural network node contains a hidden state &



RNN Hidden States

y hy = fW(ht—la 3315)
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In practice, we also often have output y



Back Propogation Through Time (BPTT)

Apply the backpropogation algorithm to the unrolled computational graph
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e BPTT is comparitively very expensive to perform
o Often, you can only hold limited steps in memory
e Training occurs in "batches" of the dataset

o Training is more difficult to parallelize

e J1is initialized to 0's or the most recent h




O E—— RNN Architectures

One-to-one
! Vanilla processing mode
Ex: Image classification




one to many RNN Architectures

One-to-many
by g Sequence output
Ex: Image captionining




many to one RNN Architectures

Many-to-one
T Sequence input
Ex: Sentiment analysis




many to many RNN ArChiteCtureS

t ¢t Many-to-many

BB Sequence input/output

P Ex: Machine translation




many to many RNN Architectures

Many-to-many
t ¢t Synced sequence input/output
Ex: Video labelling
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Other Network Types



Applications of RNN's
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"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.



Applications of RNN's

Proof. Omitted. O

Lemma 0.1. Let C be a sef of the construction.
Let C be a gerber covering. Lel F be a quasi-coherent sheaves of O-modules. We

have to show that

Oo, = Ox(L)

Proaf. This is an algebraic space with the composition of sheaves F on Xy, we
have

Ox(F) = {morph) xoy (G,F)}
where G defines an isomorphism F — F of Q-modules. O
Lemma 0.2. This is an infeger £ 15 injective.
Proof. See Spaces, Lemma 7. (]
Lemma 0.3. Let 5 be a scheme. Let X be o scheme and X is an affine open

covering. Let W © X' be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal comples.

The following to the construction of the lemma follows,
Let X be a scheme, Let X be a scheme covering, Let
b: X=Y 23 Y =¥V xx V=X

be a morphism of algebraic spaces over 8§ and Y.
Proaf. Let X be a nonzero scheme of X, Let X be an algebraie space. Let F be a
quasi-coherent sheafl of Oy -modules. The following are equivalent

(1) F iz an algebraic space over 5.

(2) If X is an affine open covering.

Consider a common stmcture on X and X the functor Ox (£7) which is locally of
finite type. O
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is i limit. Then §@ &s o finite type and sssume 5 is 8 ot and F and ¢ is » fnite
type fo. This is of finite type diagrams, and
® the compesition of G = a regular sequence,
o Dy s a sheal of rdngs,
m

FProof, We have sov that X = Spec(H) and F is s finite type representable by
algebrnic space. The property F is a finite morphism of algebeaic stacks. Then the
cohomology of X is an open seighbourhood of 17, m]

Proof. This is clear that § i a finite presentation, see Lemmas 77,
A reduced abeve we conelude that U7 is an open covering of C. The howtor F is a
“Hold

Ox. —+Fr U0y, ) — Ol Ox 0% )
Is an somorphism of covering of Oy, I F is the unbgpee element of F such that X
is ain issanorphisn.
The property F is o disjoint union of Proposition 77 and we can Altered st of
presentations of a scheme O y-algebra with F are opens of finite type over 5.
If F s o scheane theoretic image points. o

If F is & Anite direct sum lﬂ_\,"_ 5 a closed immerston, see Lepnma 77, This s a

seqquence of F is o similar morphisan.




Applications of RNN's

static void do_command(struct seg file *m, wvoid *v)

{
int column = 32 << (cmd[2] & 0xBO);
if (state)
cmd = (int)(int_state * (in_B8(&ch->ch _flags) & Cmd) ? 2 ¢ 1);
aelse

seq = 1;
for (i = 0; i < 163 i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
({count & 0x00000000£££££££8) & 0x000000£f) =< 8;
if (count == 0)
sub(pid, ppc_md.kexec_ handle, 0x20000000);

pipe set bytes(i, 0);
}
/*# Free our user pages pointer to place camera if all dash
subsystem info = &of changes[PAGE SIZE];
rek controls{offset, idx, &soffset);

J* Now we want to deliberately put it to device *

control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq puts(s, "policy ");



Finding Interpretable Cells

Cell sensﬁwe to position in line:

““““ HEEEREEEE g c i theBerezina lies in the  TEEE
dubitably proved the fallacy of all the plans for
's retreat and the soundness of the only possible

_one Kutuzov and the general mass of the army

to follow the enemy up. The French crowd fled

increasing speed and all its energy was directed to
It fled like a wounded animal and it was impossiblE

This was shown not so much by the arrangements it

as by what took place at the bridges. when the bri

~soldiers, people from Moscow and women with children
ench transport, all--carried on by wvis inertiae--
nto boats and into the ice-covered water and did not,

Cell that turns on inside quotes:

Cell that robustly activates inside if statements:

¥
A large portion of cells are not easily interpretable. Here is a typical example:

P lrer fleld"sSisitring rEpresgntatction firom Usker-space
dit pack_string(W@lid *®bufp, siize vt MrEmain, silze_ i« [ Lem)




Vanishing Gradient Problem

H=5 # dimensionality of hidden state

T Lme_steps . ) ) : !
| whh = np.random.randnm,mi if the largest eigenvalue is > 1, gradient will explode

if the largest eigenvalue is < 1, gradient will vanish

# forward pass of an RNN (ignoring inputs x)
hs = {}
ss = {}
hs[-1] = np.random.randn(H)
for t in xrange(T):
ss[t] = np.dot(whh, hs[t-1])
hs[t] = np.maximum(@, ss[t])

# backward pass of the RNN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn{H) # start offthe chain with random gradient
for t in reversed(xrange(T)):
dss[t] = (hs[t] > @) * dhs[t] # bgfkprop through the nonlinearity
dhs[t-1] = np.dot(wWhh.T, dss[t]) backprop into previous hidden state




Vanishing Gradient Problem

e Gradients in earlier layers are unstable

o This is noticable even in very deep FFN's
 An RNN, as we know, is like a very deep FFN
e The problem is made worse due to a static W



Gradient Clipping

Without clipping
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J(w,b)

With clipping
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J(w,b)



Recall: Resnet Gradient Shortcuts
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The LSTM Network
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The LSTM Network
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The LSTM Network

ft = J(l'l"f'[hf_l.i't] + bf)




The LSTM Network

iv =0 (Wi-lhy_1,2) + by)

C; = tanh(We-[he—1, 2] + be)




The LSTM Network

vo

Cr = fi = Cy 1‘|"'-r*(:*r



The LSTM Network

e ds
0Oy = U{li'.‘n [h‘f_|1.'1‘.'rl —I— b”.}
r:, o
he_y O ] h hr_ = 0y * tanh {(,'1)




RNN vs LSTM

state N — N
RNN f f - f
ULH]
LSTM I (+) _ + )
(ignoring

forget gates)




RNN vs LSTM

127 127



http://imgur.com/gallery/vaNahKE

Gated Recurrent Unit

2 =0 (W, - [ht—l.;m])
r=0c (H«’, : Ihf_l.ﬁ'-'f_])

he = tanh (W - [re * hy 1, 2])

h-.r = [1 — 3;_) * h,g_l + 23 * ;3-1’.




Summary

e RNNs allow a lot of flexibility in architecture
 Vanilla RNNs are simple but don't work very well

o Practical networks should use a LSTM /GRU
» Backward flow of gradients can explode or vanish



Thanks!



Sources

e Deep Learning, Chapter 10

e Understanding LSTM Networks

e Recurrent Neural Networks Tutorial

e The Unreasonable Effectiveness of Recurrent
Neural Networks

e CS231N Lecture 10 - Recurrent Neural Networks,
Image Captioning, L5TM


http://www.deeplearningbook.org/contents/rnn.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.youtube.com/watch?v=iX5V1WpxxkY

