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Can machine learning algorithms be used to track
the acquisition of a new language in adults, based
solely on electrical signals from the brain?



Current applications
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“airplane”

Predicted:

Predicting
fMRI activity

Observed:

Mitchell, et al (2008) 4



Can we do this with EEG?

EEG is great due to its:

e Low cost of collection (e =\
e Mobility for collecting in various environments S
e High time resolution

But, EEG has:

e Generally poorer spatial resolution
e Lower signal-to-noise ratio
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Experiment paradigm
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Machine learning analysis of brain data

Three components to discuss

1. Input features
2. Regression model
3. Prediction target



Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox |jumps over the lazy dog. = (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. == (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown-jumps over |the lazy dog. = (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

McCormick, C. (2016)



king ’ .~

Male-Female

walked

e swam
O

walking 5

o

swimming

Verb tense

Rome
Berlin
Tahel Seeweeaags
Ankara
Russia
Moscow
Canada Ottawa
Japan
e Tokyo
Vietnam Hanoi
China Beijing

Country-Capital

Images per tensorflow.org 10



Ridge regression

Linear regression model with regularization via weight decay

Basic linear regression: ¥ = woTo+ wiTy + ... + WinTy = D =wix
j=0

Gradient descent using a loss function: s = 7 ¥ tereet® - output®y
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Multivariate
regression model

EEG Data

Regression Models
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Model evaluation

Predicted Word Vectors

Ground Truth Word Vectors
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Research questions

1. Can we identify the semantics of the English word?
2. How much participant practice is needed to identify semantics?
3. How long does the brain take to process the semantics?

4. Are there areas of the brain that contribute more to identifying semantics?
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Can we identify the semantics of the English word?

Our machine learning model shows an accuracies of:

o 79.54% over 0 - 700ms
e 69.15% over 0 - 500ms

This provides evidence that EEG activity is correlated with the
representation of word semantics in the brain
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How much participant practice is needed?

2 vs 2 Accuracy (%)
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How long does the brain take to process semantics?
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Are there areas of the brain that contribute more?

0 - 500ms B 500 - 1000ms C 0 - 1000ms
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Conclusion

We show that semantics can be detected via EEG, and
further that we can detect learning of semantic concepts as
they develop a language mapping in the brain

This opens new avenues for studying language semantics
and learning via EEG
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Voltage (uV)

How does this compare to traditional methods?
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Is there a relationship to the participant’s choices?

Our machine learning model shows an accuracies of:

e 65.13% vs 59.71% over 0 - 700ms
e 57.55% vs 57.47% over 0 - 500ms

This effect might not be very powerful due to the tasks
repetition of blocks with lower participant accuracy
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Measuring significance

Significant is measured with a permutation test

1. Randomly permute the word vectors so

that they no longer pair to the correct EEG
2. Run the entire model on the permuted data
3. Repeat 1,000 times

This creates a null distribution we can use
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Input Vector
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10,000 words

Hidden Layer
Weight Matrix

300 neurons

—

10,000 words

Word Vector
Lookup Table!

300 features

McCormick, C. (2016)
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