%

Introduction to
Reinforcement Learning



Chris Foster

Machine Learning
Web Development

Computer Security




Neural Network

input layer

hidden layer 1 hidden layer 2

“A computer system modeled on the human brain and nervous system”



Neuron




Types of Machine Learning

Machine

Learning

| |

Supervised Unsupervised Reinforcement
Task driven Data driven Algorithm learns to
(Regression / ( Clustering) react to an

Classification) environment



Supervised
Learning

e (lassification and regression
e Require training labels
e Example: image categorizing

A 4



Unsupervised
Learning

e Clustering and reduction
e Does not require labels
e Example: fraud detection

4



N
| Agent
>

State Reward Action

)

Reinforcement Learning




An example reward

@




An example reward

0'©-©O



An example reward

6'0-@




Applications

Resource Management
Traffic Light Control
Robotics

Chemistry
Recommendations
Advertising

Game Playing

AGI Research

Audio Transcription
...and much more!

Tasks with easy sampling



Considerations

Tend to be more unstable

Very active research area

Often difficult to reproduce results
Requires large number of samples
Can be outperformed



https://docs.google.com/file/d/1OBEDkp9OrHENy6g-8SLM09wbzDV2mkq8/preview

All Things Markov

Markov Property

P[St+1 | St] = P[St+1 | S1, .....

Markov Process: (S, P)

Markov Chain: S is discrete

, St]




Markov Reward Process Markov Decision Process

Facebook
R=-1

Facebook

R=-1

Quit
R=0

Stud
R=+10

Study Study

(SaA, P7 R) ?)




Describing our agent

t
Our goal is to find a policy that maximizes this total reward: Z T
t>0

A policy is defined as follows: 7T(a|5) = [P[At = a|5t — S]

And the optimal policy is then: 7" = arg maxE
s

ZWtMW

—
h—



How do we evaluate the decisions the agent makes?

We introduce a value function: V7 (s) = E [Z Yirelso = s, w}
t>0

We can also evaluate a state-action pair: Q™(s,a) =E [Z vir,|se = 8, a9 = a, w]
>0

We can find the best strategy easily: (5) = argmax Q' (s,a)

Q*(S, a) = maX]E [Z ’Yt’rtlSO — S’ ao p— a,ﬂ']

>0






Approximated Cross-Entropy Method

Given M (f.i, 20), N (f.i. 200) and function approximation (f.i. NN)
depending on 6
Initialize & randomly
repeat
Sample N roll-outs of the policy and collect for each R;
elite = M best samples

0=0+aV [Zs,aéelite log 7r9(a|5):|
until convergence

return 7y




Taking on a RL problem

State: Cart position / velocity, Pole angle / velocity
Action: Push cart left, or push cart right

Reward: 1 for every step

Termination: Pole is more than 12 degrees. Cart is
more than 2.4 units. Episode goes longer than 200.

Solve target: An average score of 195




Workshop

Let’s train a CEM agent!

https://tinyurl.com/y4yj/npz



class CEM(nn.Module):

def __init_ (self, obs_size, n_actions):
super(CEM, self).__init_ ()
self.fcl = nn.Linear(obs_size, 200)
self.fc2 = nn.Linear(200, n_actions)

def forward(self, x):
X = F.relu(self.fcl(x))
return self.fc2(x)



def filter_batch(states, actions, rewards, percentile=70):
reward_threshold = np.percentile(rewards, percentile)

elite_states = []
elite_actions = []

for i in range(len(rewards)):
if rewards[i] > reward_threshold:
for j in range(len(states[i])):
elite_states.append(states[i] [j])
elite_actions.append(actions[i] [j])

return elite_states, elite_actions



Best parameters”?



Is this gradient free?





https://docs.google.com/file/d/12R7cqRpm3Lz1l0emEKDkkdZgvaHpTy7i/preview

Exploration / Exploitation Tradeoff




Pixels

raw pixels

hidden layer

State

[

]

cart_pos,
cart_vel,
pole_degq,
pole_ vel




. 0
Convolutional !
Neural 11
Networks 1 0




Flatten

3x3 kernel

5x5 kernel

5x5 kernel

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200



Combining Value and Policy Approaches



Caveats with value-based RL

1. Convergence
2. Fails to work in a continuous action space

3. Requires manual exploration-exploitation adjustment



Caveats with policy-based RL

AWESOME GOOD GOOD GOOD

GOOD GOOD GOOD GOOD GOOD

i i e



I rotate
the piece

Really bad

action

Actor Critic



Workshop

Build an Actor-Critic agent!

https://tinyurl.com/yyfgomg3



optimizer.zero_grad()

loss = policy.calc_loss(gamma)
loss.backward()
optimizer.step()
policy.clear_memory()



lr = 0.01
gamma 0.99
betas = (0.9, 0.999)





https://docs.google.com/file/d/1ca6wUcGg5HIwws8jv7QQIs_3njgyqcX2/preview



https://docs.google.com/file/d/1W70OLclEYCpaleRYqT_YwPTpVlpc_G0C/preview

Next Steps

e Battlesnake - Local event this Saturday!
e OpenAl Gym - Challenge yourself with Atari games

e AlphaZero - Learn about MCTS and AlphaGo



Thanks!



Sources

https://www.analyticsvidhya.com/
https://towardsdatascience.com/
https://www.cs.upc.edu/~mmartin/
http://karpathy.qithub.io/
https://qgithub.com/nikhilbarhate99/
https://pytorch.org/
https://github.com/nikhilbarhate99/
http://rail.eecs.berkeley.edu/

https://medium.freecodecamp.org/

https://qgithub.com/openai/gym/

https://www.coursera.org/

http://learning.mpi-sws.org/milss2016/

https://medium.com/coinmonks/

http://cs231n.stanford.edu/

https://medium.com/@m.alzantot/

https://medium.com/coinmonks/



https://www.analyticsvidhya.com/
https://towardsdatascience.com/
https://www.cs.upc.edu/~mmartin/
http://karpathy.github.io/
https://github.com/nikhilbarhate99/
https://pytorch.org/
https://github.com/nikhilbarhate99/
http://rail.eecs.berkeley.edu/
https://medium.freecodecamp.org/
https://github.com/openai/gym/
https://www.coursera.org/
http://learning.mpi-sws.org/mlss2016/
https://medium.com/coinmonks/
http://cs231n.stanford.edu/
https://medium.com/@m.alzantot/
https://medium.com/coinmonks/

