

Introduction to Reinforcement Learning

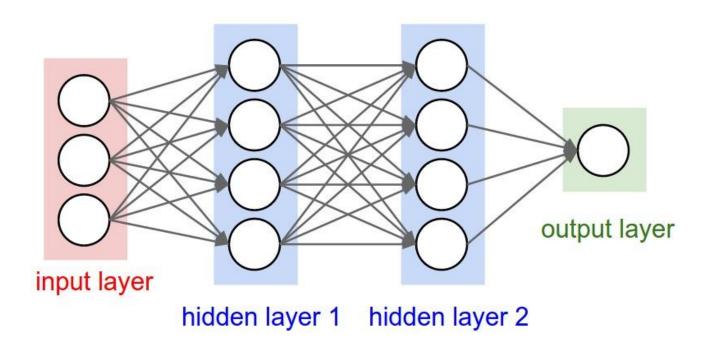
Chris Foster

Machine Learning

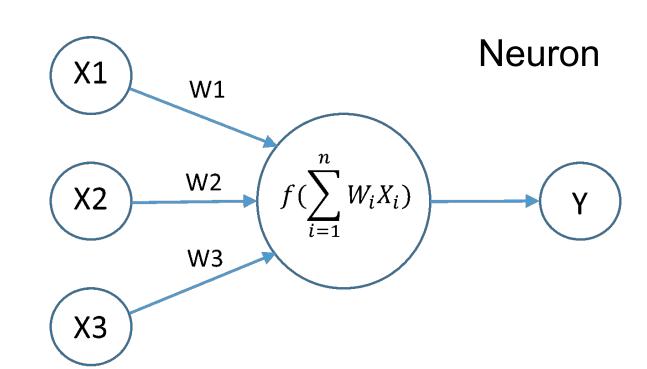
Web Development

Computer Security

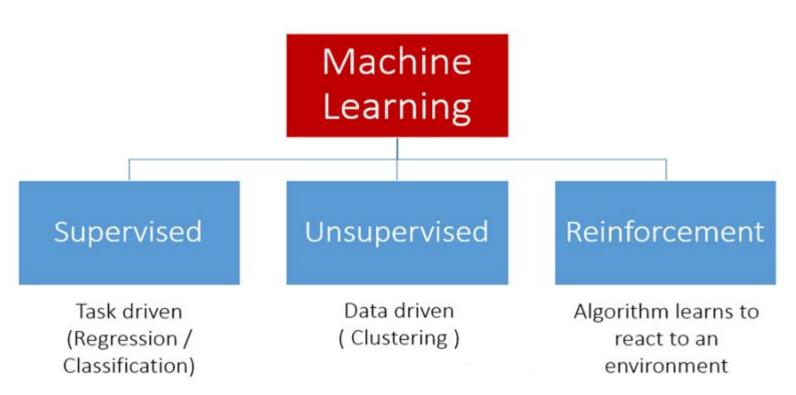
Neural Network



"A computer system modeled on the human brain and nervous system"

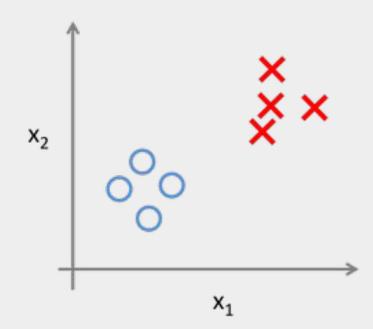


Types of Machine Learning



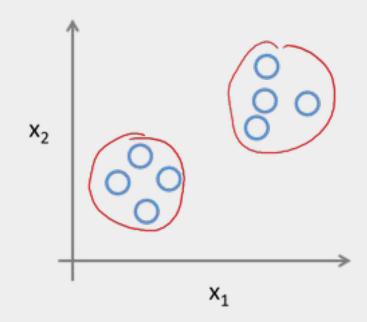
Supervised Learning

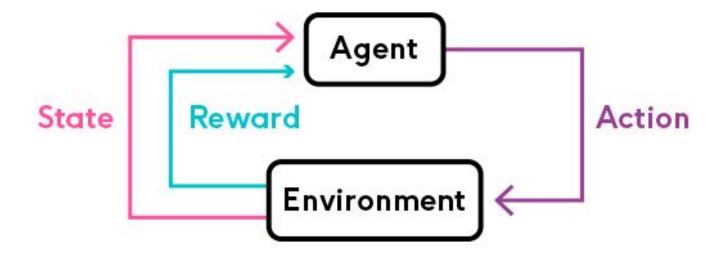
- Classification and regression
- Require training labels
- Example: image categorizing



Unsupervised Learning

- Clustering and reduction
- Does not require labels
- Example: fraud detection



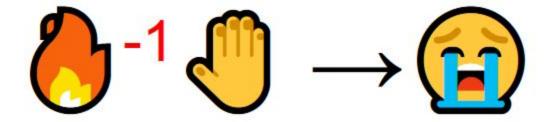


Reinforcement Learning

An example reward

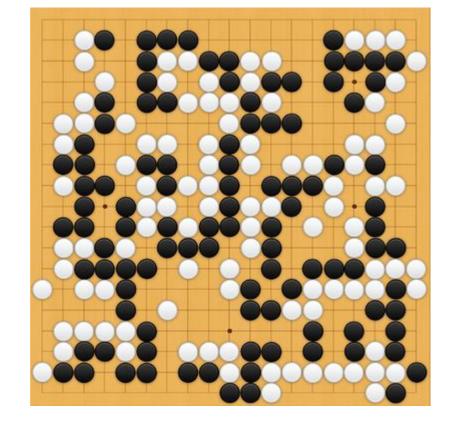
An example reward

An example reward



<u>Applications</u>

- Resource Management
- Traffic Light Control
- Robotics
- Chemistry
- Recommendations
- Advertising
- Game Playing
- AGI Research
- Audio Transcription
- ...and much more!



Tasks with easy sampling

Considerations

- Tend to be more unstable
- Very active research area
- Often difficult to reproduce results
- Requires large number of samples
- Can be outperformed

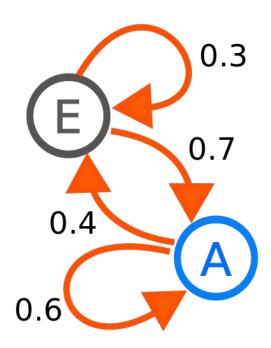
All Things Markov

Markov Property

P[St+1 | St] = P[St+1 | S1,, St]

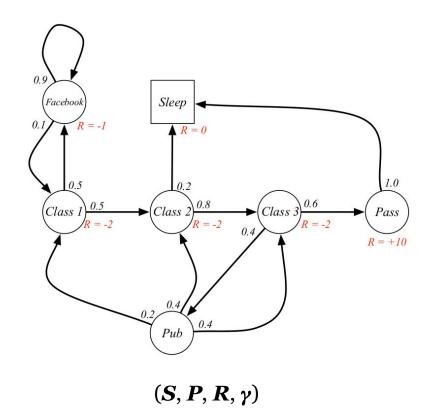
Markov Process: (S, P)

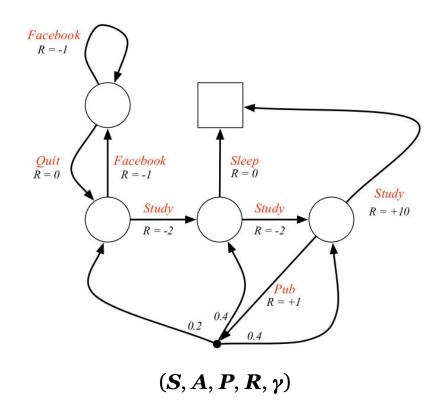
Markov Chain: S is discrete



Markov Reward Process

Markov Decision Process





Describing our agent

Our goal is to find a policy that maximizes this total reward: $\sum_{t=0}^{\infty} \gamma^t r_t$

$$\sum_{t\geq 0} \gamma^t r_t$$

A policy is defined as follows: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

And the optimal policy is then:
$$\pi^* = rg \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi
ight]$$

How do we evaluate the decisions the agent makes?

We introduce a **value function**:
$$V^\pi(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

We can also evaluate a state-action pair:
$$Q^\pi(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

We can find the best strategy easily:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \ Q^*(s, a)$$
$$Q^*(s, a) = \underset{\pi}{\operatorname{max}} \mathbb{E} \left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$

π^* VS. Q^*

Approximated Cross-Entropy Method

Given M (f.i, 20), N (f.i. 200) and function approximation (f.i. NN) depending on θ

return π_{θ}

Initialize θ randomly repeat Sample N roll-outs of the policy and collect for each R_t

elite =
$$M$$
 best samples $\theta = \theta + \alpha \nabla \left[\sum_{s,a \in elite} \log \pi_{\theta}(a|s) \right]$

until convergence

Taking on a RL problem

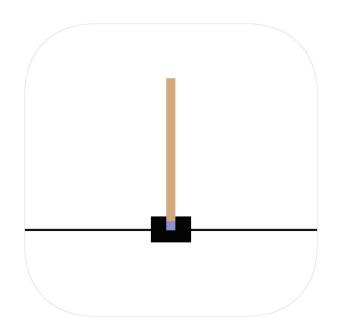
State: Cart position / velocity, Pole angle / velocity

Action: Push cart left, or push cart right

Reward: 1 for every step

Termination: Pole is more than 12 degrees. Cart is more than 2.4 units. Episode goes longer than 200.

Solve target: An average score of 195



Workshop

Let's train a CEM agent!

https://tinyurl.com/y4yj7npz

class CEM(nn.Module): def __init__(self, obs_size, n_actions): super(CEM, self).__init__() self.fc1 = nn.Linear(obs_size, 200) self.fc2 = nn.Linear(200, n_actions)

x = F.relu(self.fc1(x))

return self.fc2(x)

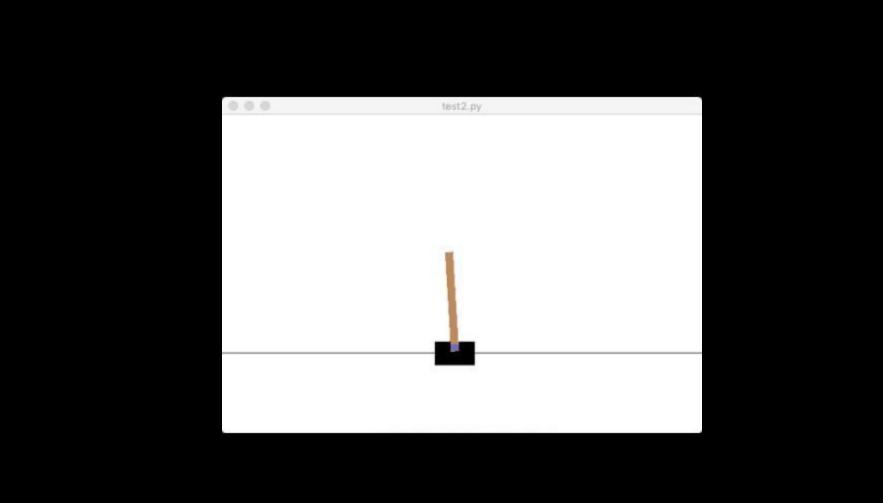
def forward(self, x):

```
def filter batch(states, actions, rewards, percentile=70):
    reward threshold = np.percentile(rewards, percentile)
    elite states = []
    elite actions = []
    for i in range(len(rewards)):
        if rewards[i] > reward threshold:
            for j in range(len(states[i])):
                elite states.append(states[i][j])
                elite actions.append(actions[i][j])
```

return elite states, elite actions

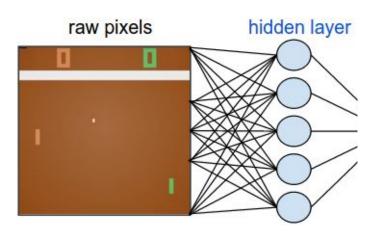
Best parameters?

Is this gradient free?



Exploration / Exploitation Tradeoff

Pixels

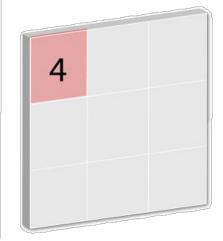


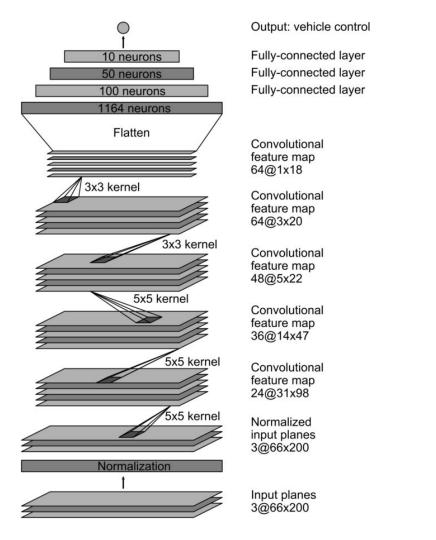
State

```
cart_pos,
cart_vel,
pole_deg,
pole_vel
]
```

Convolutional Neural Networks

1	1	1	0	0
0	1	1	1	0
	0	1	1	1
0		1	1	0
0	0			0
0	1	1	0	



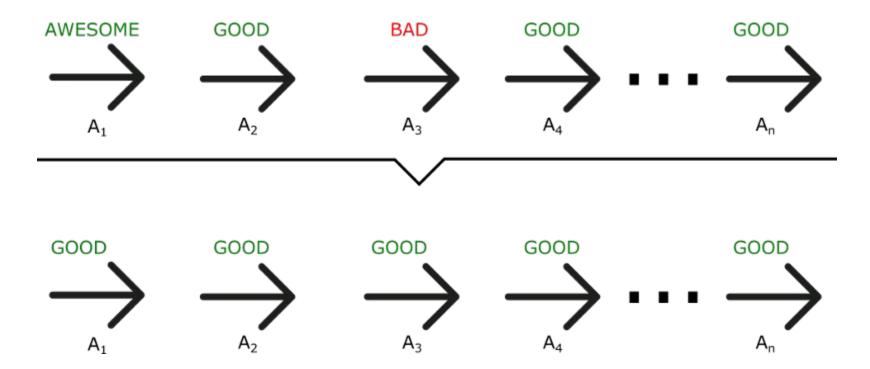


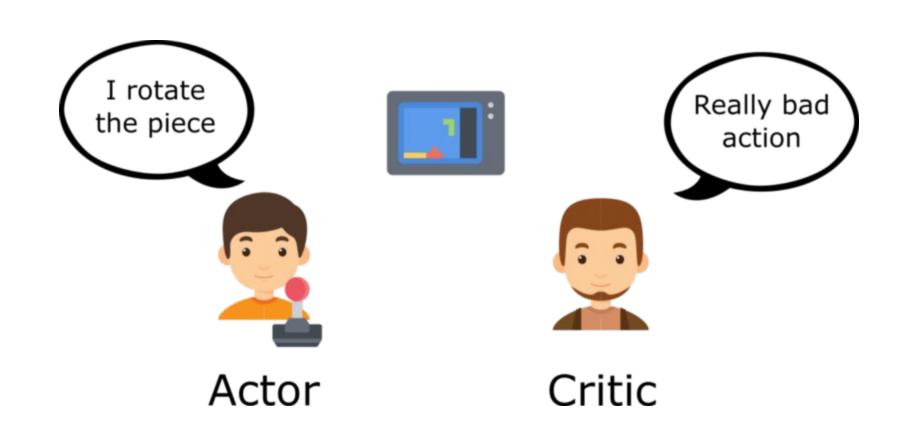
Combining Value and Policy Approaches

Caveats with value-based RL

- 1. Convergence
- 2. Fails to work in a continuous action space
- 3. Requires manual exploration-exploitation adjustment

Caveats with policy-based RL





Workshop

Build an Actor-Critic agent!

https://tinyurl.com/yyfgomg3

optimizer.zero_grad()

policy.clear_memory()

loss.backward()

optimizer.step()

loss = policy.calc_loss(gamma)

lr = 0.01 gamma = 0.99 betas = (0.9, 0.999)

Next Steps

- Battlesnake Local event this Saturday!
- OpenAl Gym Challenge yourself with Atari games
- AlphaZero Learn about MCTS and AlphaGo

Sources

https://www.analyticsvidhya.com/ https://towardsdatascience.com/ https://www.cs.upc.edu/~mmartin/ http://karpathy.github.io/ https://github.com/nikhilbarhate99/ https://github.com/nikhilbarhate99/ https://github.com/nikhilbarhate99/ http://rail.eecs.berkeley.edu/ https://medium.freecodecamp.org/
https://github.com/openai/gym/
https://www.coursera.org/
http://learning.mpi-sws.org/mlss2016/
https://medium.com/coinmonks/
http://cs231n.stanford.edu/
https://medium.com/@m.alzantot/
https://medium.com/coinmonks/