
FUNCTIONAL
PROGRAMMING

(LEARN YOU A HASKELL)
Created by / Chris Foster @chrisfosterelli

https://fosterelli.co/
http://twitter.com/chrisfosterelli

WHAT IS IT?
It's a programming paradigm
Combinatory logic develops in 1920s
Lambda calculus develops in 1930s
Lisp developed in 1950s
Expansion of many, many new languages

WHY LEARN IT?
If we list all the natural numbers below 10 that are multiples

of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is
23. Find the sum of all the multiples of 3 or 5 below 1000.

JAVA
public class Multiple {
 public static void main(String args[])
 {
 int cont = 0;
 for (int i=0; i < 1000; i++)
 {
 if (i % 3 == 0 || i % 5 == 0)
 {
 cont = cont + i;
 }
 }
 System.out.println(cont);
 }
}

HASKELL
sum $ [a | a <- [1..999], 0 ̀elem̀ fmap (mod a) [3, 5]]

WHY LEARN IT?
Remember how many lines quicksort took you in Java?

HASKELL
quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =
 let smallerSorted = quicksort [a | a <- xs, a <= x]
 biggerSorted = quicksort [a | a <- xs, a > x]
 in smallerSorted ++ [x] ++ biggerSorted

WHY LEARN IT?
Functional programming is better at solving many types of

problems, and you can apply the concepts to imperative
languages you use for everyday programming as well.

WHY LEARN HASKELL?
Functional programming at its best!
Haskell is a purely functional language
Widely used in academia and industry
Excellently demonstrates functional concepts

WHERE IS HASKELL USED?
Spam filtering
Semiconductor design
Cryptographic algorithm design
Web frameworks
Military simulations
Aerospace systems
Education

HASKELL IS HARD
Functional programming is new and difficult for you
Haskell is a very big language with a lot of components
You won't need to fully understand Haskell today!
At the end, I'll give you resources for learning Haskell

HASKEL 101
Let's cover the basics of Haskell

VARIABLE ASSIGNMENT
Variables are assigned with the 'let' keyword

let a = 10

FUNCTIONS
Functions are defined by writing them in equation format
doubleMe x = x + x

To call a function, you simply write it's name
ghci> doubleMe 10
20

FUNCTIONS
Your functions can call other functions, like you'd expect
doubleUs x y = doubleMe x + doubleMe y

LISTS
Haskell has standard, intuitive lists

ghci> let lostNumbers = [4,8,15,16,23,42]
ghci> lostNumbers
[4,8,15,16,23,42]
ghci> [1,2,3,4] ++ [9,10,11,12]
[1,2,3,4,9,10,11,12]

In Haskell, strings are simply lists of characters
ghci> "hello" ++ " " ++ "world"
"hello world"

You can append to lists and get elements from them
ghci> 5:[1,2,3,4,5]
[5,1,2,3,4,5]
ghci> [9.4,33.2,96.2,11.2,23.25] !! 1
33.2

LIST GENERATION
Haskell can smartly generate lists for you

ghci> [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
ghci> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
ghci> [2,4..20]
[2,4,6,8,10,12,14,16,18,20]

Haskell also has list comprehensions
ghci> [x*2 | x <- [1..10]]
[2,4,6,8,10,12,14,16,18,20]
ghci> [x | x <- [50..100], x ̀mod̀ 7 == 3]
[52,59,66,73,80,87,94]

A SIMPLE FUNCTION
Can you guess what this does?

removeNonUppercase st = [c | c <- st, c ̀elem̀ ['A'..'Z']]

NEAT!
ghci> removeNonUppercase "Hahaha! Ahahaha!"
"HA"
ghci> removeNonUppercase "IdontLIKEFROGS"
"ILIKEFROGS"

GUARDS
Here is something you've not seen before

bmiTell :: (RealFloat a) => a -> String
bmiTell bmi
 | bmi <= 18.5 = "You're underweight, you emo, you!"
 | bmi <= 25.0 = "You're supposedly normal."
 | bmi <= 30.0 = "You're fat! Lose some weight, fatty!"
 | otherwise = "You're a whale, congratulations!"

ghci> bmiTell 25
"You're supposedly normal."

INNER FUNCTIONS
Functions can be inline in Haskell

myCompare :: (Ord a) => a -> a -> Ordering
a ̀myComparè b
 | a > b = GT
 | a == b = EQ
 | otherwise = LT
ghci> 3 ̀myComparè 2
GT

TUPLES
Haskell has python-like tuples

ghci> zip [1,2,3,4,5] [5,5,5,5,5]
[(1,5),(2,5),(3,5),(4,5),(5,5)]
ghci> let triangles = [(a,b,c) |
 c <- [1..10],
 b <- [1..10],
 a <- [1..10]]

LET ... IN
You can clean up your functions with let ... in

cylinder :: (RealFloat a) => a -> a -> a
cylinder r h =
 let sideArea = 2 * pi * r * h
 topArea = pi * r ̂2
 in sideArea + 2 * topArea

IF STATEMENTS
Haskell has if statements!

ghci> if 5 > 3 then "Woo" else "Boo"
"Woo"
ghci> 4 * (if 10 > 5 then 10 else 0) + 2
42

IMPERATIVE VS FUNCTIONAL
There is no loops
There is no side effects
Functions are very different
Classes are very different

FUNCTIONAL MEANS
Immutability
Type systems
Lazy Evaluation
Referential Transparency
Pattern Matching
Higher Order Functions
Recursion

IMMUTABILITY
A variable that is set cannot be changed
An array's contents cannot be changed
Any objects cannot be altered or changed
Instead, immutability requires you to copy data
Everything in Haskell is immutable

LAZY EVALUATION
Code that you write doesn't necessarily run
Haskell doesn't do anything until it has to
This behaviour is also called non-strict evaluation
This allows for things like infinitely long data structures
Prelude> let a = [1..]
Prelude> let b = take 5 a
Prelude> print b
[1,2,3,4,5]
Prelude>

TYPE SYSTEMS
Haskell is a statically typed language
Haskell relies heavily on type inference

Prelude> let a = [1..]
Prelude> :t a
a :: (Enum t, Num t) => [t]
Prelude>

Types in Haskell are totally different than what you know
Functional programming using algebriac types
Type instances, type classes, data types, oh my!
We won't get into these

ELIMINATING SIDE EFFECTS
(REFERENTIAL TRANSPARENCY)

Given the same parameters,
a function produces the same result every single time.

Functions cannot have side effects
A function takes parameters, and produces a result

PATTERN MATCHING
Pattern matching allows flexiblity in functions and code
You can match conditions or extract values with this
lucky :: (Integral a) => a -> String
lucky 7 = "LUCKY NUMBER SEVEN!"
lucky x = "Sorry, you're out of luck, pal!"

Prelude> lucky 7
"LUCKY NUMBER SEVEN!"
Prelude> lucky 5
"Sorry, you're out of luck pal!"

RECURSION
Well, we have recursion in Java...
Haskell is built on recursion instead of loops

maximum' :: (Ord a) => [a] -> a
maximum' [] = error "maximum of empty list"
maximum' [x] = x
maximum' (x:xs)
 | x > maxTail = x
 | otherwise = maxTail
 where maxTail = maximum' xs

HIGHER ORDER FUNCTIONS
Lambda functions
Curried functions
Function composition
Function application

divideByTen :: (Floating a) => a -> a
divideByTen = (/10)

ghci> sum (takeWhile (<10000) (filter odd (map (̂2) [1..])))
166650

ghci> map (negate . abs) [5,-3,-6,7,-3,2,-19,24]
[-5,-3,-6,-7,-3,-2,-19,-24]

PURE FUNCTIONAL CODE
So, how does IO work purely?
The answer: it doesn't!
Haskell has pure code
Haskell has impure code (IO)

main = do
 line <- getLine
 if null line
 then return ()
 else do
 putStrLn $ reverseWords line
 main

reverseWords :: String -> String
reverseWords = unwords . map reverse . words

NON-FUNCTIONAL LANGUAGES
Javascript - underscore, lodash, and ES6
Java 8 - Lambda expressions

AND MORE!
Monads
Monoids
Functors
Seriously advanced standard lib
Advanced typesystem
Applicative Functors

KEEP GOING!

THE END
-
-

@chrisfosterelli
https://fosterelli.co

https://twitter.com/chrisfosterelli
https://fosterelli.co/

