Decoding Semantics During an Artificial Language Learning Task Using EEG

Chris Foster, Chad C. Williams, Olave E. Krigolson, and Alona Fyshe
Can machine learning algorithms be used to determine what a person is thinking about, based solely on the electrical signals from their brain?
Current applications

Neuroscience

Accessibility

Linguistics
P300 Speller
Brain-computer interfaces
Hackers Turn Tesla Into a Brain-Controlled Car

A machine learning training program; brain activity into driving commands.

EEG tech gives users the power of mind control without putting a hole in their heads

New lie detection technology too much like scientific mind reading, ethicist says

Companies plan to begin selling fMRI services by end of year, but, with no regulation, utility of technique need not be proved

BY EMILY SAARMAN

For many, the phrase “lie detection” probably brings to mind an image of a polygraph machine and an intimidating movie-style interrogation, possibly with a subject who could expertly “beat the polygraph.” But ethicist and law Professor Hank Greely said this image is about to change.

Recent advances in neuroscience promise to bring lie detection technology far beyond the notoriously unreliable polygraph and into a realm that Greely said bears eerie resemblance to scientific mind reading.

Greely, the Dean F. and Kate Edelman Johnson Professor in Law, discussed his concerns about the new lie detection technology at a campus Science, Technology and Society seminar April 14. Greely said he is excited by the potential for improved lie detection but concerned that it could lead to personal privacy violations and a host of legal problems—especially if the techniques prove unreliable.

“An intelligent lie detection gets used, people’s lives will be blighted,” Greely said. “I think it’s crazy for us to let these
Predicting fMRI Activity

Can we do this with EEG?

EEG is great due to its low cost and the ability to collect data anywhere.

EEG also has the advantage of introducing time resolution, which we can use to explore brain data in different ways than fMRI.

But, using EEG can be challenging compared to techniques like fMRI or MEG due to the lower signal-to-noise ratio and poor spatial resolution.
EEG is a tradeoff!

Accurate
Detailed
High Quality

Portable
Affordable
Simple
OpenBCI Headsets

- Cost effective
- Self contained
- Wireless
- Simple to setup
- Easy to collect
Experiment Paradigm

In this experiment 24 subjects learn to translate 60 words.

We discard words that were presented less than six times to a subject, and also discard the first two exposures of each word for each subject.

Finally we average the remaining exposures together across all subjects for each word, which gives us a single noise-reduced exposure for every word.
Ridge Regression

Simple linear regression model with regularization via weight decay

Basic linear regression: \(y = w_0 x_0 + w_1 x_1 + \ldots + w_m x_m = \sum_{j=0}^{m} = w^T x \)

Trained via gradient descent using a loss function: \(J(w) = \frac{1}{2} \sum_{i} (\text{target}^{(i)} - \text{output}^{(i)})^2 \)
Regression with EEG

The features extracted from the EEG data are a simple concatenation of the raw values in microvolts at each timestamp.

With a sampling rate of 250Hz, exposure length of 700ms, and 61 usable sensors we have a total of 10,675 features for each regressor.

What are we going to predict?
Word Vectors

The word “cat” may mean something different to different people

The concept of “fuzziness” is very universal and generalizable

We have a dictionary of many words augmented with many different word features on a scale of 1 to 5 and we call these “word vectors”

These are generated by Amazon’s Mechanical Turk service, in which human operators evaluate the attributes of the word vector
Is it a kitchen item?

Can you hold it?

Is it large?

Would you eat it?
Corpus-based Word Vectors

We use the Skipgram word vector set in this research.

This 300-element word vector set is generated by training a neural network on a large text corpus to predict nearby words.

The location of these words in high dimensional vector space is a representation of their use and semantics in language, which makes them a good target for learning semantics in the brain.
Source Text

The blue box

Training
Samples

(The, quick)
(The, brown)
(quick, the)
(quick, brown)
(quick, fox)
(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)
(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

McCormick, C. (2016)
A '1' in the position corresponding to the word "ants"

10,000 positions

McCormick, C. (2016)
Hidden Layer Weight Matrix → Word Vector Lookup Table!

10,000 words

300 neurons

300 features

10,000 words

McCormick, C. (2016)
Multi-regressor model

We train a series of simple machine learning ridge regressors such that there exists one for each element of the word vector.

Each regressor receives all timesteps of the full 61 channels of averaged EEG data, but only predicts a single index of the vector.

For 300 regressors with 10,675 features, we have 3.2 million weights per model.

Collectively these regressors form a model that allow us to predict a word vector from any given EEG activity.
Multi-regressor model
2 vs 2 accuracy

Null hypothesis: the EEG word data and word vectors are not correlated with each other in any way.

To disprove the null hypothesis we use the 2 vs 2 test, which evaluates the model in a “leave two out” fashion.

The trained models predict the two target word vectors and are successful if the distance is smaller between the matched pairs of predicted / ground truth vectors than the mismatched pairs.

If the null hypothesis is correct, our 2 vs 2 accuracy would be in a range near the chance value of 50%.
Measuring significance

Significant is measured with a permutation test

1. Randomly permute the word vectors so that they no longer pair to the correct EEG
2. Run the entire model on the permuted data
3. Repeat 1,000 times

This creates a null distribution we can use
Our machine learning model shows an accuracy of 75.51% in the 2 vs 2 test when trained on this data which is significant with $p < 0.01$

This provides evidence that EEG activity is correlated with the representation of word semantics in the brain
Measuring learning

As before, we only consider the subject-word pairs that have six or more exposures (subjects saw between 0–20 exposures of each word)

We demonstrate learning by comparing the 2 vs 2 accuracy of four averaged overlapping subsets of three exposures each
The first averaged three have a non-statistically significant accuracy while the last block is a successful detection. We would expect the last to be slightly lower than the original 2 vs 2 accuracy as it does not include as many exposures. This provides evidence of subjects learning, which is supported by their improvements in accuracy on the task.
Conclusion

We show that semantics can be detected via EEG, and further that we can detect learning of semantic concepts as they develop a language mapping in the brain.

This opens new avenues for studying language semantics and learning via EEG.
Thanks!