
CREATING ZERO-
KNOWLEDGE SAAS

APPLICATIONS
WHAT IT IS, WHY YOU WOULD WANT IT

Created by / Chris Foster @chrisfosterelli

http://fosterelli.co/
http://twitter.com/chrisfosterelli

WHO AM I?

Software Developer
TRU BCS Student
TRUSU Computer Science Club
Startup Weekend Kamloops
Kamloops Innovation Centre fanatic
Security enthusiast

THE PLAN
Things we will be covering:

What is Zero Knowledge?
How does it work? What are the benefits?
Case studies of Zero Knowledge
Implementing your own Zero Knowledge
My experience
Questions

WHAT IS ZERO KNOWLEDGE?
Buzzword
Data encrypted/decrypted by the client
Server stores encrypted data
Encryption key is derived from the user

WHY IS ZERO KNOWLEDGE GOOD?
Doesn't know anything about your data
Can't reveal anything about your data
Can never access your data

ZERO KNOWLEDGE VS. TYPICAL ENCRYPTION
Who holds the keys?
In Zero Knowledge: you do
In 'typical' encryption: your SaaS provider does

ASYMMETRIC & SYMMETRIC
Symmetric encryption: user is accessing their own data
Asymmetric encryption: users are sharing data (hard)

DOWNSIDES
Users loose keys more often than you
Debugging can be much more difficult
Development requires more work

DETERMINING ZERO KNOWLEDGE

Typically - you can't
Requires decent cryptography skills
Usually best to rely upon experts
Use evaluated products
"Who holds the keys?"

CASE STUDY: DROPBOX
Dropbox encrypts your data on their servers
Dropbox encrypts your data in transit
Dropbox is not Zero Knowledge

CASE STUDY: SPIDEROAK
Spideroak encrypts your data on their servers
Spideroak encrypts your data in transit
Spideroak is Zero Knowledge most the time

CASE STUDY: LASTPASS

Lastpass gets critized often
Actually extremely well done
Javascript app manages all encryption

CREATING YOUR OWN
You must have a client application
There are very flexible options

BEING A 'STUPID' DATA STORE
Very simple API
Simply inserts and removes data from the database

USING JAVASCRIPT
Handling this on the web can be done with Javascript
This has potential pitfalls and many security guys dislike this
However, this is better than nothing

SIGNUP
A user must generate an encryption key on signup
The encryption key can be encrypted with their password
The encryption key can be their password
The user pushes this key to the server

PROVING AUTHENTICATION
How can we identify a user without a password?
Ask them to prove a secret to us!
This typically makes asymmetric encryption more attractive

CASE STUDY: MY STUFF
At signup, generate two asymmetric key pairs
One for phone, one for web interface
Both key pairs are encrypted with the password
Both key pairs are stored on the server

PHONE -> WEB INTERFACE
1. Phone encrypts message with the web interface's public key
2. Phone signs the message with its private key
3. Phone posts the message to the REST API
4. Web interface receives via socket.io
5. Web interface decrypts with its private key
6. Web interface verifies it is signed from the phone
7. Display message

WEB INTERFACE -> PHONE
1. Web interface encrypts message with the phone's public key
2. Web interface signs the message with its private key
3. Web interface posts the message to the REST API
4. Phone receives via Google Messaging
5. Phone decrypts with its private key
6. Phone verifies it is signed from the web interface
7. Phone displays message

IMPLEMENTATION TIPS
Do not roll your own encryption, ever
Look into password recovery options
Make the process transparent to the user
Open source when you can

THE WORLD NEEDS A SUPER HERO
The problem with Zero Knowledge: it is geeky
Zero Knowledge companies don't know how to market
Zero Knowledge shouldn't be geeky, it should be necessary
Users will not bother if it requires extra work
We can fix this

END
@chrisfosterelli

http://fosterelli.co/

